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SUMMARY
The nonlinear partial differential equation of motion for an incompressible fluid flowing over a flat plate
under the influence of a magnetic field and a pressure gradient, and with or without fluid injection (or
ejection) through the plate is transformed to a nonlinear, third order ordinary differential equation by
using a stream function and a similarity transformation.

The necessary boundary conditions are developed for flow with and without fluid injection (or ejection),
and an example is presented to illustrate the solution to the flow problem.

The controlling equation reduces to the well known Falkner-Skan equation when the magnetic field is
zero, and if additionally the pressure gradient is zero, the equation reduces to the Blasius equation.

1. Introduction

The current world energy shortage has spurred interest in unconventional ways to generate
electrical power. Indeed magnetofluiddynamic power generation has already commenced
in Russia [1]. Interest in magnetofluiddynamic flow began in 1918, when Hartmann in-
vented the electromagnetic pump [2].

The first published papers treating the flow of electrically conducting fluid were by
Hartmann [3], and Hartmann and Lazarus [4], in 1937. Since then a large body of litera-
ture has developed, in which references [5] through [8], for flow through a channel are
typical. References [9] and [10] treat the subject from the textbook point of view.

With the exception of linear problems, there are very few exact problems solved in this
literature. One difficulty is, to quote from Rossow [11], “It is then to be expected that in
flow over a semi-infinite plate in the presence of a magnetic field, a similar solution will
not exist.” Lykoudis [12] dealing with a compressible fluid, including disassociation effects,
showed that similarity solutions do exist for power law flow from a stagnation point.

This paper develops a unique similarity differential equation for incompressible flow over
a semi-infinite flat plate in the presence of a magnetic field and a pressure gradient with
or without fluid injection or ejection.

2. Theory

The motion equation for an incompressible fiuid flowing over a semi-infinite flat plate,
see Figure 1, under the influence of a magnetic field, and a pressure gradient is
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Figure 1. Magnetofluiddynamic boundary layer with fluid injection.
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and the continuity equation is

ou + ov 0
Ox dy B
where

u = fluid velocity in the x-direction,
v = fluid velocity in the y-direction,
g = acceleration of gravity,

p = fluid density,

P = pressure,

v = kinematic viscosity,

¢ == electrical conductivity,

B, = magnetic field strength.

If we define a similarity variable, #, as
n = ay/x* = n(x, y)

where

JﬂUO
a= ,
v
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a = (1 = m)/2, (x>0, for uniqueness of #) ®)

B=(@1+m)y2, (B+0) (6)
and

limu(l,y) = U, = Uy™, (/> 0). (7

Also, defining a stream function, ¥, as

¥ = bx"f(n) = G(x)f(n) ®)
Where
vU,
b= €)]
B
and where
0
v, = (i) = —» (10)
ox /,
and
oy
b=(5), " D
then, continuity is automatically satisfied, and the motion equation becomes
lrbyl.bxy - lrbxll’yy = H(x) + v‘rbyyy - S(x)‘»by (12)
where
—g 0P
H(x) = — — (13)
p Ox
and
v 52
S(x) = 998y (14)
P

It can be shown that

oy v
b= (22) s+ () ro (22) (15

and
/al,b
16
Y, = (},)f()( ) (16)
where
ay
<6G)f f(n) (17
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and

oy _ —on

x),  x

n\ a

) X
Thus

Ve = bx"HBf() — anf ()] = —v
and

Yy = abx’ f'(n) = w.

Further substitution in Eq. (12), gives

@2 CTOTHB — f (1) — B (m)]

= H(x) + a®bvx?73%f"(n) — abx"~*S(x)f'(n).

Now if
H(x) = Hyx'
S(x) = Spx°

then, to permit a similarity problem, it follows that
yp =2m—1
and
o=m—1
and so, Eq. (23) can be written as
I + fef"() = Bf')* + Hy — Npf () = 0
where
H, = H,/BU}
B=2m/m+1)

and where we define a dimensionless field strength number, N,

So
N, = .
BU,
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(18)

(19)

(20)

@1

(22)

(23)

(24)
(25)

(26)

@7

(28)

(29)
(30)

b

It is necessary to determine three boundary conditions for Eq. (28), further it is desirable

to put Eq. (28) into a more convenient form for computing.
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Using the condition that
lim u(x, y) = K(x) = Upx™ = U,, (%)m = lim UoxX"f'(n) (32)
yo o "~
so that
limu(l, y) = K(I) = Upl™ = U, = lim U,i™f'(n) (33)

y— o o

then, it must be that

lim f'(n) = 1. (34)

n—w

Utilizing Eq. (34), it can be shown that
H =B +N,. (35)

To find the other two necessary boundary conditions, we assume at the wall, (y = 0),
there is no slippage for u, so that

u(x, 0) = 0 = lim Uyx"f'(n) (36)

70

and from Eq. (21), we see that
v(x,0) = liil;{—bxﬁ “HBf() — anf' W]} = F(x)
= vox°. 37

Thus, it must be that

J©) = —vo/bp (38)
and

f0)=0 (39)
and

F(x) = pox(m~ /2 (40)
where

vo = magnitude of velocity coefficient for injection, (v, > 0), or ejection, (v, < 0),
of fluid through the wall.

If vy = 0, then
f0)=0 (41)

and there is no fluid passing through the plate.
Additionally, the following must hold:

pH0x2m

P(x) = P, g

., (m#0) 42)
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where

P, = g constant

and
BZ m=1
S(x) = S~ = 700 @3)
P
B,(x) = B,x™ /2, (44)
Lykoudis [13] developed an expression equivalent to Eq. (44). Additionally
cB?
=980 (49)
pBU,
Using Eq. (35) in Eq. (28), we obtain
f) + fef () + Bl — f')°1 + Nl = f'(m)] = 0. (46)

Boundary conditions, f(y):

L. f(0) = —vo/bp

2. f' (=0
3. limf'(n) =1

Eq. (46) is the general similarity differential equation controlling the effects of magnetic
field, pressure gradient and fluid injection, or ejection, through the wall. When the magnetic
field is zero, the equation reduces to the well known Falkner-Skan equation. If both the
magnpetic field and pressure gradient are zero, the equation reduces to the Blasius equation.

For convenience in presenting results, we can write

U;(; =f'(n) “
and
Re, \t( 1\"?
TJIL( lj ) <?) = —f() + (1 — mynf' /(1 + m) )

where the Reynolds number, Re,, is

Re, = 2=% 49)
v
Example
Given:
@) + ff ) + Bl — /)1 + N[l ~f'(m] =0. (46)
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Figure 2. Magnetofluiddynamic flow with a pressure gradient.

Boundary conditions, f():

1. f(®) = 0, (no fluid injection or ejection)

2.0y =0
3. limf'(n) =1
n=w
Assume:

m =01, N, = 0.0l.
Figure 2 shows a plot of u(//x)"/U, = f'(n) vs n = ay/x* for 0 < n £ 10.

Conclusion

Using a stream function y, which satisfies continuity, and a similarity variable, #, the non-
linear partial differential equation of motion for an incompressible fluid flowing over a flat
plate, under the influence of a magnetic field, and a pressure gradient, with or without
fluid injection or ejection, is transformed to a nonlinear, third order, ordinary differential
equation. The necessary boundiry conditions have been established from a physical basis.
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The derived controlling differential equation includes the classical Falkner-Skan equation
and the Blasius equation as special cases.

An example is solved numerically and f’'(n) is shown plotted against the similarity
variable 7.
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