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SUMMARY 
The nonlinear partial differential equation of motion for an incompressible fluid flowing over a fiat plate 
under the influence of a magnetic field and a pressure gradient, and with or without fluid injection (or 
ejection) through the plate is transformed to a nonlinear, third order ordinary differential equation by 
using a stream function and a similarity transformation. 

The necessary boundary conditions are developed for flow with and without fluid injection (or ejection), 
and an example is presented to illustrate the solution to the flow problem. 

The controlling equation reduces to the well known Falkner-Skan equation when the magnetic field is 
zero, and if additionally the pressure gradient is zero, the equation reduces to the Blasius equation. 

1. Introduction 

The current world energy shortage has spurred interest in unconventional ways to generate 
electrical power. Indeed magnetofluiddynamic power generation has already commenced 

in Russia [1]. Interest in magnetofluiddynamic flow began in 1918, when Har tmann in- 
vented the electromagnetic pump [2]. 

The first published papers treating the flow of electrically conducting fluid were by 
Har tmann  [3], and Har tmann  and Lazarus [4], in 1937. Since then a large body of litera- 

ture has developed, in which references [5] through [8], for flow through a channel are 
typical. References [9] and [10] treat the subject from the textbook point of  view. 

With the exception of linear problems, there are very few exact problems solved in this 

literature. One difficulty is, to quote f rom Rossow [11], " I t  is then to be expected that in 

flow over a semi-infinite plate in the presence of a magnetic field, a similar solution will 
not exist." Lykoudis [12] dealing with a compressible fluid, including disassociation effects, 
showed that similarity solutions do exist for power law flow from a stagnation point. 

This paper develops a unique similarity differential equation for incompressible flow over 
a semi-infinite flat plate in the presence of a magnetic field and a pressure gradient with 
or without fluid injection or ejection. 

2. Theory 

The motion equation for an incompressible fluid flowing over a semi-infinite flat plate, 
see Figure 1, under the influence of a magnetic field, and a pressure gradient is 
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Figure 1. Magnetofluiddynamic boundary layer with fluid injection. 
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and the continuity equation is 

c3u 3v 
- - +  - -  = 0  
8x 8y 

where 

u = fluid velocity in the x-direction, 

v = fluid velocity in the y-direction, 

g = acceleration o f  gravity, 

p = fluid density, 

P = pressure, 

v = kinematic viscosity, 

~r = electrical conductivity, 

By = magnetic field strength. 

I f  we define a similarity variable, q, as 

,1 = a y / x  ~ = , l ( x ,  y )  

where 

ff /~go 
,p 

(1) 

(2) 

(3) 

(4) 
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= (1 - m)/2, (a > O, for uniqueness of 1/) 

f l = ( 1  +m)/2 ,  ( f l r  

and 

lim u(l, y) = U m = Uo lm, (I > 0). 
y--* ~ 

Also, defining a stream function, ~k, as 

t~ = bxaf(n) = a(x) f (n)  

Where 

~ vUo 
b =  

and where 

Y 

and 

x 

then, continuity is automatically satisfied, and the motion equation becomes 

4',4,~, - OxO, ,  = H ( x )  + v % .  - S ( x ) O ,  

where 

- 9  ~P 
H ( x )  - 

p Ox 

and 

o~B2(x) 
S(x )  - 

P 

It can be shown that 

~O a ' ( x )  + 
Ox = ~ - ~  Y G f ' (q )  ~ x  , 

and 

where 
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(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Journal of Engineering Math., Vol. 11 0977) 249-256 



252 M .  H.  Cobble  

and 

( ~--af ) = a(x) 

(a~x)-, -~"-x 

Thus 

~ ,  = b x a - t [ 3 f ( q )  - c~/f'(t/)] = - v  

and 

~,y = a b x ' - ' f ' O 1 )  = u. 

Further  substitution in Eq. (12), gives 

aZbZx2(p-~)-  1 [(fl _ ~)f,(q)2 _ f l f ( t l ) f , (n)]  

= H ( x )  + a3bvx~-3~f" ( t l )  - a b x ~ - ' S ( x ) f ' ( t l ) .  

Now if  

/4(x) = ~oX' 

S(x )  = So x~ 

then, to permit  a similarity problem, it follows that  

~ ~ - - 2 m -  1 

and 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

6 = m - 1 (27) 

and so, Eq. (23) can be written as 

f , , , (q) + f ( q ) f , ( q )  _ tiff(q)2 + H i  _ N , , f ' ( t l )  = 0 (28) 

where 

H 1 = H o / f l U  z (29) 

fi = 2 m / ( m  + 1) (30) 

and where we define a dimensionless field strength number,  N,,, 

So 
Nm- •Vo" (31) 

It is necessary to determine three boundary  conditions for  Eq. (28), further it is desirable 
to put  Eq. (28) into a more  convenient form for  computing.  
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Using the condit ion that  

l im u(x, y) = K(x)  = Uo xm --- U~o = l im Uoxmf'(rl) (32) 
y--* oO tl--~ oO 

so tha t  

lirn u(/, y) = K(1) = Uo lm= U| = lim Uolmf'(~l) (33) 
y'-~ oO ~/--r o0 

then, it must  be that  

l imf ' (~/)  = 1. (34) 
//"~ oO 

Utilizing Eq. (34), it can be shown that 

H 1 = fl + N,.. (35) 

To find the other  two necessary bounda ry  conditions,  we assume at the wall, (y = 0), 
there is no slippage for u, so that 

u(x, 0) = 0 = lira Voxmf'(rl) (36) 
r / ~ O  

and f rom Eq. (21), we see that  

v(x, 0) = lira ( -  bx p- 1 [flf(r/) - ~r/f'(~/)]} = F(x) 
r/-~O 

= VoX ~. (37) 

Thus, it must  be that  

f(O) = -vo tb~  (38) 

and 

f ' (0)  = 0 (39) 

and 

F(x) = vox ~m- 1~/2 (40) 

where 

Vo = magni tude  of  velocity coefficient for  injection, (v o > 0), or  ejection, (v o < 0), 
of fluid th rough  the wall. 

I f  Vo ---- 0, then 

f (0)  = 0 (41) 

and there is no fluid passing th rough  the plate. 
Additionally,  the following must  hold:  

pHo x2m 
P(x) = Po , (m ~ 0) (42) 

2mg 
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where 

and 

Po = a constant 

M. H. Cobble 

S(x) = So xm- 1 _ gaBy 2ox"- i (43) 
P 

By(x) = Byo x(m- 1)/2 (44) 

Lykoudis [13] developed an expression equivalent to Eq. (44). Additionally 

goB o 
N,~ -- (45) 

pflUo 

Using Eq. (33) in Eq. (28), we obtain 

f"(t l)  + f(q)f"(rl) + / ~ [ 1 -  f '(tl) z] + n,,[1 - i f (q ) ]  = 0. (46) 

Boundary conditions, f(q): 

1. f ( o )  = - vo/b# 

2. f ' (O)  = 0 

3. limf'(r/) = 1 
r/--+ oO 

Eq. (46) is the general similarity differential equation controlling the effects of magnetic 
field, pressure gradient and fluid injection, or ejection, through the wall. When the magnetic 
field is zero, the equation reduces to the well known Falkner-Skan equation. If both the 
magnetic field and pressure gradient are zero, the equation reduces to the Blasius equation. 

For convenience in presenting results, we can write 

U| = if(q) (47) 

and 

(48) U |  fl ) \ x )  = - f ( r / ) + ( 1 - m ) ~ f ' ( n ) / ( l + m )  

where the Reynolds number, Rex, is 

Rex = --U~x (49) 

(46) 

Example 

Given: 

f ' ( q )  + f(q)f"(tl) + ~[1 - f ' ( r / )  2] + Nm[1 --if(q)] = 0. 
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Figure 2. Magnetofluiddynamic flow with a pressure gradient. 

Boundary  conditions,  f(r/) : 

1. f (0)  = 0, (no fluid injection or ejection) 

2. f ' ( 0 )  = 0 

3. l i m f ' ( r / ) =  1 

Assume:  

m = 0.1, Nm = 0.01. 

Figure 2 shows a plot  o f  u(l/x)m/u~ = f '(q) vs q = ay/x ~ for  0 < q < 10. 

Conclusion 

Using a s t ream function ~b, which satisfies continuity,  and a similarity variable, r/, the non- 
l inear partial  differential equat ion of  mot ion  for  an incompressible fluid flowing over a flat 
plate, under  the influence of  a magnet ic  field, and a pressure gradient,  with or wi thout  
fluid injection or ejection, is t r ans formed to a nonlinear,  third order,  ordinary  differential 
equation�9 The necessary boundary  condit ions have been established f rom a physical  basis. 
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The der ived contro l l ing  differential  equat ion  includes the classical F a l k n e r - S k a n  equat ion 

and  the Blasius equat ion  as special cases. 

A n  example  is solved numer ica l ly  and f ' ( t / )  is shown p lo t ted  against  the s imilar i ty  

var iable  t/. 
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